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Abstract

Purpose – This paper aims to tackle the problem of thermo-solutal convection and
macrosegregation during ingot solidification of metal alloys. Complex flow structures associated
with the development of channels segregate and sharp gradients in the solutal field call for the
implementation of accurate methods for numerical modeling of alloy solidification. In particular, the
solute transport equation is convection dominated and requires special non-oscillarity type high-order
schemes to handle the regions of channels segregates.
Design/methodology/approach – In the present study, a time-splitting approach has been adopted
to separately handle solute advection and diffusion. This splitting technique allows the application of
accurate total variation dimensioning (TVD) schemes for solution of solute advection. Applications
of second-order Lax-Wendroff TVD SUPERBEE and fifth-order weighted essentially non-oscillatory
(WENO) schemes are described in the present article. Classical numerical solution of solute transport
using hybrid and central-difference schemes are also employed for the purpose of comparisons.
Numerical simulations for solidification of Pb-18%Sn in a two-dimensional rectangular cavity have
been carried out using different numerical schemes.
Findings – Numerical results show the difficulty of obtaining grid-independent solutions with
respect to local details in the region of channels. Grid convergence patterns and numerical
uncertainty are found to be dependent on the applied scheme. In general, the first-order hybrid
scheme is diffusive and under predicts the formation of channels. The second-order central-difference
scheme brings about oscillations with possible non-physical extremes of solute composition in the
region of channel segregates due to sharp gradients in the solutal field. The results obtained using
TVD and WENO schemes contain no oscillations and show an excellent capture of channels
formation and resolution of the interface between solute-rich and depleted bands. Different stages of
channels formation are followed by analyzing thermo-solutal convection and macrosegregation at
different times during solidification.
Research limitations/implications – Accurate prediction of local variation in the solutal and flow
fields in the channels regions requires grid refinement up to scales in the order of microscopic
dendrite arm spacing. This imposes limitations in terms of large computational time and applicability
of available macroscopic models based on classical volume-averaging techniques.
Practical implications – The present study is very useful for numerical simulation of
macrosegregation during ingot casting of metal alloys.
Originality/value – The paper provides the methodology and application of TVD schemes to
predict channel segregates during columnar solidification of metal alloys. It also demonstrates the
limitations of classical schemes for simulation of alloy solidification.
Keywords Alloys, Flow, Solidification, Formed materials, Numerical analysis
Paper type Research paper
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Nomenclature

C0 initial mass fraction of solute
(Sn) in the alloy (wt%)

Cmax maximum solute concentration
(%)

Cmin minimum solute concentration
(%)

corr correction term

cp specific heat (J kg�1 K�1)

hCi average mass fraction of
solute (Sn) (wt%)

D solutal diffusion coefficient
(m2 s�1)

ERE extrapolated relative error

ffine value of variable at the finest
grid

fext value of variable extrapolated
to zero grid size

f̂f numerical flux

g gravity (m s�2)

GCI grid convergence index

GES global extent of segregation

gl volume fraction of liquid

h enthalpy (J kg�1)

hhi average enthalpy (J kg�1)

k thermal conductivity
(W m�1 K�1)

K permeability (m2)

ko binary partition coefficient

L latent heat of fusion (J kg�1)

ml liquidus slope (�C wt%�1)

p pressure (Pa)

PeT, PeD Peclet Number for thermal
and solutal transport
(ReM Pr or ReD Sc)

Pr Prandtl number (n/a)

ReM cell Reynolds number (V�x/n)

Sc source term

Sc Schmidt number (n/D)

t time (s)

T temperature (�C)

TV total variation

v superficial average velocity
(m s�1)

V volume (m3)

vl intrinsic velocity of the liquid
phase (m s�1)

Vdomain volume of the computational
domain (m3)

w nonlinear weights

X, Y coordinate axes (m)

Greek symbols

g
n;LW
i Lax Wendroff slope,

Eq. (18)

g
n;T
i limited slope

�t time step (s)

�x, �y grid size (m)

b smoothness indicators

bT thermal expansion coefficient
(�C�1)

bc solutal expansion coefficient
(wt%�1)

l2 secondary dendrite arm
spacing (m)

a thermal diffusivity (m2 s�1)

n kinematic viscosity (m2 s�1)

m dynamic viscosity (kg m�1 s�1)

s CFL number (� ¼ �t=�x)

r mass density (kg m�3)

Subscripts

l Liquid

m melting point for a pure
substance

k grid point

ref reference conditions

s solid
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1. Introduction
Local variations of average solute mass fraction at the macroscopic scale of a casting
are called macrosegregation. The most common cause of macrosegregation in ingots is
fluid flow in the mushy zone induced due to variation of density with temperature and
concentration which redistributes segregated solute elements within the remaining
liquid volume. Thermo-solutal interactions in the mushy zone and at the solidification
front in an ingot result in the formation of preferred flow channels. These channels are
called A-segregates and result in the development of solute-rich bands adjacent to
solute depleted bands in the final casting.

Macrosegregation is one of the major casting defects. Therefore, it has been extensively
investigated with the help of mathematical models in the past. Reviews on the subject are
available in the literature (Prescott and Incropera, 1996; Beckerman and Viskanta, 1993;
Beckermann, 2002). Broadly, two types of models are employed in the study of
macrosegregation: single-phase models and multi-phase models. In single-phase models,
only one set of governing equations is used to describe the transport phenomena in the
liquid, solid, and mushy regions. There are two basic formulations to arrive at a single-
phase model:

(1) the continuum mixture method theory (Voller et al., 1989; Bennon and
Incropera, 1987; Prescott et al. 1991); and

(2) the volume-averaging technique (Ni and Beckermann, 1991; Ganesan and
Poirier, 1990; Goyeau et al., 2004).

While the mixture method is simple to work with, the volume-averaging method
provides more insight into the physical basis of the process. It should be mentioned
that the volume-averaging approach originally leads to a multi-phase model with
separate equations for the liquid and solid phases that include appropriate interface
transfer terms (Ni and Beckermann, 1991). However, a single-phase model can
be obtained using the volume-averaging technique by adding up the resulting
macroscopic conservation equations for the solid and liquid phases and making use of
the interfacial balances (Ganesan and Poirier, 1990; Ni and Beckermann, 1991). Studies
reported in the literature are concerned with the solidification of binary alloys and
multi-component alloys (Prescott and Incropera, 1994; Schneider and Beckermann,
1995; Amberg, 1991; Felicelli et al., 1991, 1997).

From these studies, it is evident that mathematical models, in general, have provided
good insight into the formation of macrosegregation. However, the quantitative match
between numerical prediction and experimental data is far from satisfactory. The
previous numerical simulations of alloys solidification investigated the effects of one or
more of the mechanisms leading to macrosegregation. However, rigorous verification
procedure has not been demonstrated and no clear numerical reference solution exists in
the literature. In order to reach a reference solution, the effect of discretization errors, i.e.
numerical diffusion and dispersion, on the predictions is an important issue. The efforts
to clarify some of the numerical issues were made by Venneker and Katgerman (2002) for
direct chill casting. A potential source of errors lies in the transformation of governing
differential equations to discretized equations. In this regard, incorrect treatment of the
convection term can result in two types of errors: numerical diffusion (spreading out of
profiles) and numerical dispersion (appearance of wiggles or oscillations) on the profile.
Roughly speaking, numerical diffusion is common to first-order schemes when
convection dominates diffusion (high cell-Peclet numbers). Numerical dispersion is
common for unbounded high-order schemes and occurs in the vicinity of steep gradients.
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Traditionally, the first-order upwind and power law schemes have been generally
utilized in previous simulations of ingot solidification because of their simplicity and
robustness in the sense that one can always get some output, although it may not be very
accurate.

Complex flow structures associated with the development of flow channels and sharp
gradients in the solutal field in the region of channels segregates call for the
implementation of accurate methods for numerical modeling of alloy solidification. In
particular, the solute transport equation is convection dominated and requires special
non-oscillarity type high-order scheme to handle the regions of channel segregates. In
recent years, high-order numerical methods have been widely used in computational fluid
dynamics to effectively resolve complex flow features and treat such discontinuities. Such
schemes come from the total variation diminishing (TVD) theory (see LeVeque, 1990).
The non-oscillating property of a TVD scheme is obtained by limiting the conservative
flux of a high-order scheme so as to check the TVD requirements as will be explained in
section 2.

Weighted essentially non-oscillatory (WENO) schemes are designed based on the
successful essentially non-oscillatory (ENO) schemes in Harten et al. (1987), Shu and
Osher (1988) and Shu and Osher (1989). Both ENO and WENO use the idea of adaptive
stencils in the reconstruction procedure based on the local smoothness of the numerical
solution to automatically achieve high-order accuracy and non-oscillatory property
near discontinuities. ENO uses just one (optimal in some sense) out of many candidate
stencils when doing the reconstruction; while WENO uses a convex combination of all
the candidate stencils, each being assigned a non-linear weight which depends on the
local smoothness of the numerical solution based on that stencil. WENO improves
upon ENO in robustness, better smoothness of fluxes, better steady state convergence,
better provable convergence properties, and more efficiency. For more details of ENO
and WENO schemes, we refer to Jiang and Shu (1996) and Shu (2003).

The TVD property is a global property of an advection scheme. It goes some way
toward preventing spurious amplification of extrema. High-resolution schemes based
on the TVD theory have been used in other domains to resolve problems involving
strong convection and discontinuities in the solution field (Harten, 1983; Sweby, 1985;
Wang and Hutter, 2001). Surprisingly, so far, in numerical modeling of thermo-solutal
convection and solidification of alloys, only few models use high-resolution schemes to
simulate convection terms. However, high-order methods have been extensively used
in simulation of dendritic microstructure during crystallization (Gibou et al., 2003). In
the present article, special attention is given to the numerical treatment of solute
transport equation. Numerical discretization of solute transport equation using hybrid
or central-difference schemes follows the classical procedure. Application of special
non-oscillarity type high-order schemes that are based on the TVD theory to the solute
transport equation requires special treatment. A two-step time-splitting procedure has
been adopted to handle the solute transport equation. In the first step, the advection
part of solute transport, hyperbolic equation, is explicitly treated using high-order
TVD schemes. In the second step, the contribution of solute diffusion and source terms
are implicitly treated. Up to the authors’ knowledge, the concept of time splitting of
concentration equation and application of high-order TVD schemes for solidification
modeling have not been addressed in the literature. In the present study, we report on
the application of explicit-splitting Lax-Wendroff TVD SUPERBEE scheme (Vincent
and Caltagirone, 1999) and the fifth-order WENO scheme (Jiang and Shu, 1996) using
the third-order Runge-Kutta method for time discretization. We consider solidification
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of a binary Pb-18%Sn alloy in a two-dimensional rectangular domain for analysis of
therm-osolutal convection, channels formation, and macrosegregation fields obtained
using different numerical approaches. The governing equations for mass, momentum,
energy, and species are based on the volume-averaging method (Ganesan and Poirier,
1990; Ni and Beckermann, 1991; Rappaz et al., 2003; Goyeau et al., 2004). Numerical
simulations have been carried out using different grid sizes to study the convergence
behavior and numerical uncertainty using different schemes. Different stages of
channels formation are followed by analyzing thermo-solutal convection and
macrosegregation at different times during solidification.

2. Physical model
We consider solidification of a binary Pb-18%Sn alloy in a two-dimensional rectangular
domain of height H and width W as shown in Figure 1. The thermo-physical properties
of Pb-18%Sn are listed in Table I. Initially, the liquid alloy is stagnant at a uniform
temperature To and concentration Co. At time t ¼ 0, solidification starts by cooling the
left and right walls with an external cooling fluid of temperature (Text) and an overall
heat transfer coefficient (U ). The two other sides of the cavity are insulated. A solid
phase and a mushy layer then grow from the cold boundaries, and convective motions
driven by both thermal and solutal buoyancy can occur. A rigid and connected solid
phase is assumed, which forms a porous mush in the phase change zone. To keep the
problem simple, we suppose that the solid and the liquid have the same density, the
Boussinesq approximation is valid, and macroscopic species diffusion in the solid phase
is neglected as compared to macroscopic solute diffusion in the liquid phase (Ds<<Dl).
Besides, we suppose that the permeability is given by the Carman-Kozeny function with
a fixed secondary dendrite arm spacing, l2:

K ¼ l2
2 g3

l

180 ð1� glÞ2
ð1Þ

The macroscopic conservation equations based on the volume-averaging method consist
of transport equations for mass, momentum, heat, and species, simultaneously valid in
the liquid, mushy, and solid regions. They are written as (Ganesan and Poirier, 1990;

Figure 1.
Physical model,
solidification of
Pb-18%Sn in a

rectangular cavity
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Ni and Beckermann, 1991; Rappaz et al., 2003):

r � V ¼ 0 ð2Þ

r � ðmlrVÞ � glrp� mlgl

K
Vþ gl~rrg ¼ r

@V

@t
þ r

gl

V � ðrVÞ ð3Þ

r
@hhi
@t
þ rcprT � V�r � ðkrTÞ ¼ 0 ð4Þ

@hCi
@t
þrCl � V ¼ r � ðDlrClÞ ð5Þ

where V ¼ glvl ; vs ¼ 0; p ¼ pl , Ts ¼ Tl ¼ T , ks ¼ kl ¼ k, rs ¼ rl ¼ r, cps ¼ cpl ¼ cp,
gs þ gl ¼ 1, and ml is considered constant. gs and gl denote the volume fractions for
solid and liquid phases. Expression of specific enthalpy for solid (hs) and liquid (hl)
phases, and of the average specific enthalpy hhi are written as:

hs ¼ cpT; hl ¼ cpT þ L; hhi ¼ cpT þ glL ð6Þ

With L denoting the specific latent heat, supposed constant. The variation of density
with temperature and concentration is calculated using:

~rr ¼ ro 1� bTðT � Tref Þ � bCðCl � Cref Þ
� �

ð7Þ

where

bT ¼ �
1

r

@r

@T

� �
P

; bC ¼ �
1

r

@r

@C

� �
P

; Tref ¼ Tp þmlC0; and Cref ¼ C0:

Table I.
Physical properties of
Pb-18%Sn

Property Symbol Units Pb-18%Sn

Specific heat cp J (kg K)�1 176
Latent heat of fusion L J kg�1 3.76Eþ04
Thermal conductivity K W (m K)�1 17.9
Liquid dynamic viscosity M Pa s 1.10E�03
Secondary dendrite arm spacing �2 m 1.85E�04
Liquid thermal expansion coefficient �T K�1 1.16E�04
Liquid solutal expansion coefficient �C (wt%)�1 4.90E�03
Nominal concentration Co wt% 18.0
Reference density �o kg m�3 9250
Melting point at C ¼ 0 Tp

�C 327.5
Eutectic temperature Te

�C 183.0
Eutectic composition Ceut wt% 61.911
Equilibrium partition coefficient Ko 0.310
Liquidus slope ml

�C (wt%)�1 �2.334
Liquidus at nominal concentration (Tliq)

�C 285.488
Diffusion coefficient in the liquid Dl m2 s�1 1E-9
Heat transfer coefficient U W m�2 K�1 400
External temperature Text

�C 25
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With Tref ¼ Tp þmlC0, where Tp is the melting temperature at zero concentration, ml

is the slope of the liquidus line, Cref ¼ C0 (nominal mass concentration of solute in the
binary alloy), bT the constant volumetric thermal expansion coefficient, and bC the
constant volumetric solutal expansion coefficient.

3. Coupling procedure
The temperature-solute coupling problem is closed on specifying the thermodynamics
and the local scale transport behavior. The condition of thermodynamic equilibrium at the
solid-liquid interface, Cs ¼ ko Cl, suggests that the liquidus line in the phase diagram can
be used to specify a relationship between the liquid concentrations and the temperature.
For a linearized liquidus line of a binary alloy system this relationship is given by:

T ¼ Tp þmlCl ð8Þ

Cl and Cs are the intrinsic phase-averaged mass concentration of solute in the liquid
and solid phases. k0 is the partition coefficient.

A central step in the coupling of the solute and temperature is the correct accounting of
the local scale (microscopic) mass diffusion that occurs in the dendritic arm spaces. When
specifying the liquid fraction, gl, and solute density, hCi, the requirement is to obtain a
value for the REV liquid concentration, Cl. The value of Cl is controlled by the microscopic
solute diffusion of the solute in the solid phase, often referred to as ‘‘back diffusion.’’ In the
simple case of complete microscopic solute diffusion in the solid and liquid phases, local
thermodynamic equilibrium is achieved and the lever rule can be used to obtain Cl:

Cl ¼
hCi

ko þ glð1� koÞ
ð9Þ

In the general case, however, back diffusion is finite and a more detailed treatment of
the local scale transport process is required.

Solutions of macroscopic conservation equations of momentum, energy and solute
transport are carried out using the most recent available values of gl and Cl. Special
procedure is required to handle the energy equation and calculate the liquid fraction gl.
An inner iteration is performed that adjusts the nodal temperature field and calculates
the current liquid fraction gl. The objective of this inner iteration is to find nodal fields
that simultaneously satisfy the constraint equations (Equations (8) and (9)). This inner
iteration is a key step in this coupling approach. The current iterate of the liquid
fraction (i þ 1) can be approximated as function of the previous one (i) as:

g iþ1
l ¼ g i

l þ corr ð10Þ

At convergence, the value of correction ‘‘corr’’ is zero. In fact, the correction term is driven
by the difference between the temperature resulting from the present iteration of energy
equation and the liquidus temperature driving the phase change process along the
liquidus line. Therefore, the value of ‘‘corr’’ can be written in a general way in the form:

corr ¼ cpðT � TliqÞ
L

ð11Þ

where Tliq is a function of solute concentration in the liquid given by Equation (8).
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The advantage of this technique is that at convergence the temperature at any point
in the mushy zone corresponds to the equilibrium temperature as determined by the
equilibrium phase diagram. No supplementary corrections are needed for the
temperature field provided that the liquid fraction field is correct (corr ¼ zero).

The present simple coupling algorithm can be summarized as follows:

. Starting with the initial guesses (or variable initialization);

. Solve the momentum equation;

. Solve the energy equation;

. Correct liquid fraction using Equation (10), and solve energy equation until
convergence of liquid fraction field (corr < 1E � 7);

. Solve solute transport equation; and

. Advance time, reinitialize variables and restart calculation.

In this simple coupling approach, the time step is assumed to be sufficiently small
so that the effect of variation in solute concentration on the liquidus temperature is
negligible. Therefore, the inner iteration loop of energy equation uses the last available
value of Cl. During solution, values of the residuals of momentum, energy, and species
equations less than 10�15 are assured to obtain a converged solution. The total mass
imbalance (r:V ) is less than 10�8.

4. Numerical solution of solute transport
Traditionally, first-order numerical methods are often used in numerical simulations
of alloy solidification. However, it is well known that the flow structures during
solidification are so complicated and the evolution time of these structures is long.
Therefore, it is impractical to use low-order methods to obtain an acceptable resolution.
This calls for the application of special non-oscillatory type high-order schemes, which
are emphasized in this paper. Special attention is given to the solute transport
equation, Equation (5), that is written in a form amenable to numerical solution as:

@hCi
@t
þrhCi � V ¼ r:ðDlrClÞ þ Sc ð12Þ

where Sc ¼ rðhCi � ClÞ � V .
Since the diffusion coefficient of solute in the liquid phase is usually very small

(Dl ¼ 10�9 m2 s), Equation (12) is convection dominated (nearly hyperbolic). Also, the
existence of high gradient regions (channel segregates) in the solution makes it difficult
to obtain accurate numerical solutions using classical numerical schemes. The classic
schemes do not offer good enough results: a first-order upwind scheme is too diffusive
and a high-order scheme (such as central difference, Lax-Wendroff, and Quick) brings
about oscillations due to sharp gradients in the composition field. As a consequence,
these types of schemes do not ensure a precise calculation of the interfaces associated
with the area of channel segregates. A good way of solving Equation (12) is to apply
methods used in compressible fluid mechanics to solve hyperbolic conservation laws.
Hyperbolic problems are characterized by the existence of discontinuities spreading or
appearing during the evolution. This property requires the use of a robust scheme able to
be applied in the presence of discontinuities. We also want a high-order scheme giving
accurate solutions. Such schemes are derived from the TVD theory (see LeVeque, 1990).
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A desirable property of an advection scheme is that it should be ‘‘monotonicity-
preserving’’ or ‘‘shape-preserving’’; that is, it should not create spurious extrema or cause
spurious amplification of existing extrema in an advected quantity. This desirable
property can be achieved by carefully constraining or ‘‘limiting’’ the advective fluxes
calculated by the scheme. Consider the advection of solute concentration C in one
dimension by a velocity u, described by the equation:

@C

@t
þ u

@C

@x
¼ 0 ð13Þ

and, to simplify the discussion, restrict our attention to the case where u is constant and
positive. Let Ck

n be a discrete approximation to C in the kth grid box at time step n. The
total variation TV at time step n is defined as:

TVn ¼
X

k

jCn
kþ1 � Cn

k j ð14Þ

A scheme is TVD if it ensures that TV nþ1 � TV n.
Many high-order methods are used in CFD, suitable for solving hyperbolic

conservation law, such as the compressible Euler equation, or convection-dominated
convection-diffusion problem, such as the compressible Navier-Stokes equations, at
high Reynolds numbers. For such problems, shocks and other discontinuities or high
gradient regions exist in the solutions, making it difficult to design stable and high-
order numerical methods. We have decided to apply the TVD theory (LeVeque, 1990;
Yee, 1987; Hirsch, 1990) to the equation of solute transport. An explicit-splitting Lax-
Wendroff TVD SUPERBEE scheme (Vincent and Caltagirone, 1999) is adopted. The
obtained scheme is of second order, except near the discontinuities, where a first order
is enforced. Also, an implementation of fifth-order WENO scheme that follows the
description of Jiang and Shu (1996) using third-order Runge-Kutta method for time
discretization is carried out. A first-order hybrid scheme and a second-order central-
difference scheme are also employed for the purpose of comparisons. Numerical
discretization of solute transport equation using hybrid or central-difference schemes
follows the classical procedure and shall not be repeated here.

Application of special non-oscillarity type high-order schemes that are based on the
TVD theory to the solute transport equation requires special treatment. In the present
study, a two-step time-splitting procedure has been adopted to handle the solute
transport equation. In the first step, the advection part of solute transport, hyperbolic
equation, is explicitly treated using high-order Lax-Wendroff TVD SUPERBEE or
WENO schemes by considering the system:

C� � Cn

�t
þrCn:V ¼ 0 ð15Þ

In the second step, the contribution of solute diffusion and source terms are implicitly
treated by considering the system:

Cnþ1 � C�

�t
¼ r:ðDlrCnþ1

l Þ þ Snþ1
c ð16Þ
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The final result is equivalent to solving the complete system given by:

Cnþ1 � Cn

�t
þrCn:V ¼ r:ðDlrCnþ1

l Þ þ Snþ1
c ð17Þ

The details of Lax-Wendroff TVD SUPERBEE second-order scheme, WENO fifth-order
scheme, and their numerical implementations are briefly outlined in the appendix.

5. Solution methodology
The governing equations are discretized using the finite-volume method on a staggered
unique mesh. The resulting linear systems of equations are solved using MUltifrontal
Massively Parallel sparse direct Solver. An augmented lagrangian method is used to
handle the velocity-pressure coupling. The augmented-lagrangian method allows to
decouple the fields of pressure and velocity (Fortin and Glowinski, 1982). This
predictor/corrector iterative method consists of solving an optimization problem by
solving a velocity-pressure saddle point with an Uzawa algorithm. It is an iterative
method which consists, starting from an initial field of pressure, of solving the NS
equations modified by the introduction of the constraint of divergence null, then
calculating a new field of pressure using a modified continuity equation. A central-
difference convection scheme is used for the discretization of energy and momentum
equations. The utilization of central-difference scheme for energy and momentum
equations will be justified in the next section. Different schemes have been utilized for
the solute transport equation as described above.

6. Results and discussion
Comparisons of numerical results using hybrid, central difference, TVD, and WENO
schemes are presented in the following sections. The ultimate purpose is to present
grid independent results. However, as will be shown below, the results of numerical
simulations show the difficulty of obtaining grid-independent solutions with respect to
channels formations because of the highly unstable and transient convection phenomena
and the physics associated with channels development. Therefore, an analysis of grid
convergence rates and numerical uncertainty using different schemes are performed
first to decide the selected grid for final presentation of results. Comparisons of flow,
temperature, solid fraction, and global macrosegregation fields are then discussed using
solutions obtained at the finest grid. The interest here is to compare the results obtained
using different schemes. The issue of obtaining a reference solution is addressed in terms
of required computational time and the need for parallel computations.

6.1 Grid convergence and numerical uncertainty
The assessment of numerical uncertainty is necessary for verification of CFD codes to
become a reliable tool for the analysis and design (Oberkampf and Trucano, 2008). A
potential source of errors lies in the transformation of governing differential equations
to discretized equations. The approach of calculation verification involves performing
a grid convergence study and determining the observed order of convergence, error
bands, and grid convergence indices. Previous numerical simulations of alloys
solidification have concentrated on the effects of one or more of the mechanisms
leading to macrosegregation. Little attention is devoted to demonstrate rigorous
verification procedure. One major difficulty of the present analysis lies in the choice of
appropriate variables for assessment of grid convergence and estimation of numerical
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uncertainty. Since macrosegregation is the ultimate concern in simulation of alloy
solidification, parameters related to final solute segregation at the end of solidification
are adopted as quantitative measures for grid convergence study. A global extent of
segregation (GES) is calculated as (Schneider and Beckermann, 1995):

GES% ¼ 100

Co

1

Vdomain

ððð
Vdomain

ðC � CoÞ2dv

� �1=2

ð18Þ

The GES takes the general form of standard deviation. Thus, a large value of GES
indicates that the data points are far from the mean (high segregation) and a small value
of GES indicates that they are clustered closely around the mean (low segregation). The
values of relative deviation of minimum and maximum concentration from the average
initial value, Cmin% ¼ 100(Cmin � Co)/Co and Cmax% ¼ 100(Cmax � Co)/Co, are
adopted as local measures for the intensity of macrosegregation. In addition, final
macrosegregation patterns showing the percentage relative deviation of concentration
from the average, 100(Ci � Co)/Co, are plotted and compared for different grids.

Many of the approaches proposed in the literature for quantification of the
numerical uncertainty are based on grid refinement in conjunction with Richardson
extrapolation (RE) (Roache, 1998). RE usually uses calculations on three grids to
determine the extrapolated value of a dependent variable to zero grid size, either using
the theoretical order of the scheme (on at least two grid levels), or via the apparent or
observed order which is calculated as part of the solution. In spite of being a very
useful tool for quantifying discretization errors in CFD, there still remain major
problems that need to be addressed to advance the level of confidence that could be
trusted upon RE. Alternative methods are proposed due to the difficulties of RE (Celik
and Li, 2005). These techniques estimate the numerical uncertainty based on the
difference between the computed solution and a higher-order reconstruction obtained
using appropriate non-linear extrapolation methods using a minimum of five grids.
Assuming the grid size as �x or �y, the extrapolated variable of interest is defined as
fext ¼ f�x¼0. In the present study, a uniform grid with �x ¼ �y is used and a cubic-
spline method is adopted for extrapolation of computed quantities. Once fext is known
the numerical uncertainty is calculated using the fine grid convergence index
proposed by Roache (1998) which is written in terms of solution obtained at the fine
grid ffine as:

GCIfine ¼ Fs
fext � ffine

ffine

����
���� ð19Þ

The GCI indicates an error band on how far the solution is from the asymptotic value.
It indicates how much the solution would change with a further refinement of the grid.
The factor of safety is recommended to be Fs ¼ 3.0 for comparisons of two grids and
Fs ¼ 1.25 for comparisons over three or more grids. The extrapolated relative error (ERE)
can be also used to quantify the uncertainty which is defined as (Celik and Li, 2005):

ERE ¼ fext � ff

fext

����
���� ð20Þ

Numerical simulations have been carried out using different schemes for five different
values of uniform grid sizes. Referring to a given grid size by the subscript n, the grid
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refinement ratio is defined as r ¼ �xn/�xn�1. The value of r is taken to be constant
and equal to 1.4. The first grid used (50 � 60) corresponds to a value of
�x ¼ �y ¼ 0.001 m and is referred to as k ¼ 0, i.e. �x ¼ �xo.

The convergence patterns using different schemes are shown in Figure 2 for the
calculated values of Cmin%, Cmax%, and GES. These are represented as function of
the normalized grid spacing defined as �xn/�xo. Two types of grid convergence can
be identified, namely monotonic and non-monotonic. A convergence is defined to be
monotonic whenever the product (fn � fn�1) (fnþ1 � fn) is less than zero for any grid
index n (Celik and Li, 2005). Monotonic convergence patterns are observed for hybrid,
TVD, and WENO schemes for the three measures of Cmin%, Cmax%, and GES. The
convergence patterns using central-difference scheme are non-monotonic. As
compared to other schemes, lower values of Cmin% and higher values of Cmax%
are obtained using the central-difference scheme. The values of Cmax% obtained
using the hybrid scheme are relatively lower than those obtained using other schemes.
Using hybrid, TVD, and WENO schemes, a remarkable increasing tendency of
Cmax% and low decreasing tendency of Cmin% are obtained with refining the grid.
Using the central-difference scheme, some unrealistic values of Cmin% and Cmax%
outside the range of theoretical expected limits of Cmin% ¼ �69.30 percent,
Cmax% ¼ 243.95 percent are observed. These theoretical limits correspond to the
ultimate cases of instant solidification of initial liquid of composition Co, resulting in a
solid with concentration Cs ¼ koCo and the maximum possible eutectic composition of
Ceut. The unrealistic Cmin% values are only noted while using coarse grids. However,
the unrealistic value of Cmax% is obtained using fine grid of 192 � 231. This
observation is important as it points to the possibility of wrong prediction of eutectic
formation using the CD scheme. Concerning GES, it can be observed that the values
obtained using the hybrid scheme are always lower than other schemes. Comparable
values of GES are obtained using TVD and WENO schemes. Slightly higher values of
GES are obtained using the central-difference scheme.

One may conclude that, in terms of Cmin%, and Cmax%, the results are far from
grid independent. However, the numerical uncertainty in the calculation of Cmin% and
Cmax% should be analyzed by considering the areas associated with each of them as
will be discussed later using macrosegregation maps. In terms of GES, one has to note
that the changes over the span of scale depicted in Figure 2(a) are small. An analysis of
numerical uncertainty in the calculated GES is shown in Table II for grid of 192 � 132.
Values of GCI and ERE are acceptable. The hybrid scheme show relatively high values
of GCI and ERE.

The behavior of variation of Cmin% with grid refinement using WENO and TVD
schemes shows two important stages of grid dependence. In the first stage, Cmin%
shows small variation with grid refinement, grid refinement improves the overall
prediction of channels formation in terms of location and number. In the second stage,
Cmin% starts to decrease relatively faster, further grid refinement better resolves the
local details of flow within channels. Increasing the number of nodal points within a
channel increases the predicted intensity of flow passing through the channel, as will
be shown later. The enrichment of solute within a channel comes at the expense of
adjacent areas that are depleted from solute. Therefore, the value of Cmin% starts
decreasing with the increasing the number of nodal points.

Note that, the present computations have not reached a reference grid-independent
solution. The required CPU computational time is very high. For example using
268 � 324 grid, the CPU computation time is about 4 h for each second of process time,



Simulation of
channel

segregates

853

using a time step of 0.001 s. In view of the total solidification time (460 s), this required
76 days of CPU time on SGI Altix ICE 8200 Supercomputer (three Tflops, 32
computation nodes, total of 256 Intel Xeon quad-core processors 3 GHZ, memory
2 G/core, total memory 0.5 T) for which parallel computation would be useful.

Figure 2.
Variation of GES, Cmin%,
and Cmax% with grid size
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6.2 Macrosegregation patterns
The above analysis has considered only comparisons of quantitative measures of
macrosegregation. Further investigations have been carried out to compare the final
macrosegregation patterns predicted using different schemes and their variation with
mesh size. Macrosegregation patterns obtained using different schemes are shown in
Figures 3-6. They are all drawn between minimum and maximum values of�80 and 250
percent using 10 percent as an interval. The selected range of these levels exceeds the
theoretical limits of Cmin% and Cmax% discussed above. It was dictated by the values
of Cmin% and Cmax% obtained using the central-difference scheme, see Figure 2. The
interest is to give a unified picture for proper comparison of different schemes. For
clearness, the values of Cmin% and Cmax% are noted on the top of each figure. In all
figures the areas of maximum solute concentration (Cmax%) are observed to be
associated with the channel formed at the top of the cavity. On the other hand, the values
of minimum solute concentration (Cmin%) are found to exist in the solute depleted bands
adjoining each channel in the upper right corner of the cavity. As can be inferred from
the maps, the percentage of these areas to the total cavity area is very small.

Table II.
Numerical uncertainty in
GES% using different
schemes for
192 � 231 grid

Scheme GES extrapolated to h ¼ 0 GES at finest grid GCI% ERE%

WENO 29.449 29.104 1.480 1.184
CD 31.046 30.602 1.813 1.451
HYBRID 28.865 27.917 4.245 3.396
TVD 30.255 29.628 2.645 2.116

Figure 3.
Macrosegregation
patterns obtained using
CD scheme for different
grid sizes

Figure 4.
Macrosegregation
patterns obtained using
hybrid scheme for
different grid sizes
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In general, using WENO and TVD schemes, the number of channels increases with
refinement of the grid. For 192 � 231 and finer grids, the number of channels does not
change with grid refinement. However, the local variations in the area of channels
continue to change with further grid refinement. As compared to WENO scheme, less
number of nodes is needed for the TVD scheme to predict the final number of channels.
This may offer a computational time advantage for the use of TVD scheme.

On the other hand, the hybrid scheme fails to predict any channels even for the
finest mesh of 192 � 231. Only the tendency to form channels is observed using hybrid
scheme at 192 � 231. It seems that perturbations in the flow field which are in the
general form of oblique flow at the region of channel formation, as will be discussed in
detail in the following section, are damped by excessive false diffusion of the hybrid
scheme. Moreover, channel segregates in the upper portion of the cavity are always
oblique. They form what is known as ‘‘A’’ segregates in industrial ingots when one
considers the complete cavity. It is well known that false diffusion associated with first-
order schemes is non-negligible when the flow field is oblique to the grid boundaries.

In the present study, using CD scheme for simulations of channels development, it
can be observed from Figure 3 that, in addition to unrealistic values of minimum and
maximum solute concentration predicted by the CD scheme, the region of channels is
characterized by highly non-uniform and sometimes ruptured interfaces between the
solute-rich and solute depleted bands. The form of channels improves with the increase
of number of nodes. However, the quality of channel shape is low as compared to the
shape predicted using WENO and TVD schemes. The reason for this is that the second-
order central-difference scheme brings about oscillations with non-physical extremes of
solute composition in the region of channel segregates due to discontinuities in the

Figure 5.
Macrosegregation

patterns obtained using
WENO scheme for
different grid sizes

Figure 6.
Macrosegregation

patterns obtained using
TVD scheme for

different grid sizes
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solutal field. These oscillations can be clearly shown by investigating the horizontal
concentration profile in the upper portion of the cavity (y ¼ 50 mm) shown in Figure 7.
Also, the number of channels predicted using the CD scheme is less than those obtained
using TVD and WENO schemes.

To summarize, the first-order scheme suffers from numerical diffusion and the CD
scheme suffers from numerical dispersion. Numerical diffusion is common to first-order
schemes when convection dominates physical diffusion. Numerical dispersion is common
for unbounded high-order schemes and occurs in the vicinity of steep gradients. Also, for
CD scheme numerical oscillations increase when the value of cell Peclet number exceeds
two. The relative importance of advection and diffusion is estimated based on the cell
Peclet number. For diffusion of temperature (thermal diffusion), the cell Peclet number is
defined as PeT ¼ V�x/�. For mass diffusion, it is defined as PeD ¼ V�x/D, where V is
the velocity and �x is the cell size. For momentum transport a cell Reynolds number
defined as ReM ¼ V�x/� is used. It should be noted that PeT ¼ ReM. Pr and
PeD ¼ ReM. Sc. An analysis of these values for different grids is shown in Table III. The
value of velocity observed inside a channel is in the order of 0.001-0.003 m s�1. Using a
value of V ¼ 0.002 m s�1 in the estimation of cell Reynolds and Peclet numbers, it is clear
that the cell solutal Peclet number is very high. High values of cell solutal Peclet number
and oblique flow inside a channel excludes the application of first-order and CD schemes
for resolving solute-transport during solidification of alloys. In principle, grid refinement
can alleviate these numerical errors. However, the degree of refinement is often totally
impractical for engineering purposes. The adoption of such schemes includes the

Figure 7.
Horizontal profile of
mixture composition at
the end of solidification
using CD scheme for
different grid sizes
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challenges of eliminating numerical errors as well as describing local phenomena
occurring in the channel region.

The Peclet number for solute transport is very high as due to very small value of
solute diffusion coefficient. For momentum and energy transport, small values of cell
Reynolds and Peclet numbers might allow the utilization of CD scheme. However, caution
should be always taken regarding first-order schemes because of inherent numerical
diffusion associated with oblique flow to grid boundaries. Previous studies reported by
Mohamad and Viskanta (1989), Zhou and Zebib (1992), and Cless and Prescott (1996) also
confirmed the unability of first-order schemes for predicting oscillatory convection in low
Prandtl number natural convection. The second-order central-difference scheme was
recommended for use in their transient simulations of low Pr natural convection.

The results obtained using TVD and WENO schemes contain no oscillations and show
an excellent capture of channels formation and resolution of the interface between solute-
rich and depleted bands. Apart from the channels region, the predicted macrosegregation
in the other areas of the cavity using different schemes are approximately similar. This can
be attributed as due to the absence of significant concentration gradients in these regions.

Using WENO and TVD schemes, the predicted channel width using 137 � 165 and
192 � 231 grids is about 1,000mm. The value of mesh element is about 365 and
255mm, respectively. That is we have about three nodes in the channel using
137 � 165 grid and four nodes using 192 � 231 grid. That is the grid length scale is
sufficiently smaller than the channel width. This number of nodes can be considered as
the minimum required for resolving the flow characteristics and following the stages of
development of channels (to be discussed in the next section). Since channel size is
related to the value of dendrite arm spacing (d2 ¼ 185mm in the present study), we can
say that the grid size should be in the order of dendrite arm spacing in order to
accurately predict channels formations. In areas away from the channels region the
grid size is not critical and a coarser mesh can be used. However, considerable
differences between the various simulations that are apparent on the local scale, in
particular in the region of channels formation, as noted in the variations of Cmax%
and Cmin% for example, indicate that the minimum spacing recommendation is not
sufficient to achieve grid-independent results. These differences are caused primarily
by the highly unstable and transient convection phenomena associated with channels
initiation and development. In addition, the local scale phenomena in the channels
region are better described by the increasing the number of nodes in the channel.

As an example, Figure 8 shows the results obtained using WENO scheme employing
further grid refinement. Results obtained using 192 � 231 and 268 � 324 are compared
with a zoom on the channels region, where some local differences are noted by increasing
the number of nodes within one channel from four to six. The flow structure in the
channels region, represented by streamlines after 60 s of the beginning of cooling,
changes with the increase of number of nodes in a single channel. It can be observed that,

Table III.
Values of cell Reynolds
and Peclet numbers for

different cell sizes

Grid Cell size (m) ReM PeT PeD

50 � 60 1.00E-03 1.68Eþ01 1.82E-01 2.00Eþ03
70 � 84 7.14E-04 1.20Eþ01 1.30E-01 1.43Eþ03
98 � 118 5.10E-04 8.58Eþ00 9.28E-02 1.02Eþ03
137 � 165 3.65E-04 6.14Eþ00 6.64E-02 7.30Eþ02
192 � 231 2.60E-04 4.38Eþ00 4.74E-02 5.21Eþ02
268 � 324 1.87E-04 3.14Eþ00 3.39E-02 3.73Eþ02



HFF
20,8

858

as compared to small number of nodes, the intensity of flow in a single channel increases.
This can be inferred by closer spaced streamlines. This ultimately results in the increase
of value of Cmax% and decrease in the value of Cmin% with the grid refinement.

6.3 Stages of development of channels segregates
In the present section the results obtained using 192 � 231 grid are analyzed to get
further insight into the stages of development of channels and differences between TVD
and CD schemes. For this purpose, we make a zoom on the upper right corner of the
cavity and follow the development of channels by analyzing solute segregation and flow
field represented by equally spaced streamlines, see Figure 9 for results obtained using
TVD scheme and Figure 10 for results obtained using CD scheme. Also shown in Figures
9 and 10 the progress of liquidus front (represented by the isoline of gl ¼ 0.95) with time.

In the absence of liquid superheat, solutally driven circulation is dominant from the
beginning of cooling. Sn-rich interdendritic fluid penetrates the liquidus interface
towards the center of the casting at channels locations. As it moves to the center it gets
hotter. Since the liquid was in equilibrium with solid at a lower temperature, it can
induce remelting. Local Sn enrichment by the penetrating interdendritic liquid results
in local depression of the liquidus temperature. Localized melting of solid dendrites
occurs, the permeability increases with increasing liquid fraction, and hence the flow
resistance decreases. The flow follows preferred channels which are indicated by the
closely spaced streamlines shown in Figures 9 and 10.

Figure 8.
Final macrosegregation
pattern and zoom on the
flow structure in the
channels region after 60 s
of cooling using WENO
scheme with four and six
nodes in a single channel
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The first developed channel is observed to form horizontally along the cavity top surface.
Other channels start developing from the top to the bottom of the cavity. Once a channel is
developed it starts elongating to connect with the top solute-rich region. The last developed
channels may therefore not elongate to the top region as due to insufficient time to be
completely established. This order of channels development is observed using either CD or
TVD schemes. Closer look at the streamlines shows that for the development of a channel

Figure 9.
Stages of development of
channels segregates using
TVD scheme (192 � 231
grid), zoom on the upper
right corner of the cavity



HFF
20,8

860

the streamlines are first disturbed in the new channel location and with the passage of time
a channel is established at the new location. The reason for the disturbance of streamlines
below an established channel is attributed to the tendency of flow to change orientation to
feed the upper channel. This sequence can be observed for the development of all channels.
Note also that the first channels formed at earlier times (20 s) change orientation with more
tilted angle with the passage of time. This can be observed from the streamlines and
concentration maps as well as from the liquid front map at different times.

Figure 10.
Stages of development of
channels segregates using
CD scheme (192 � 231
grid), zoom on the upper
right corner of the cavity
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Figure 11 shows the horizontal profiles of mixture composition at the end of
solidification using different schemes (H1 at y ¼ 10 mm, H2 at y ¼ 30 mm, H3 at
y ¼ 50 mm). As compared to the results obtained using TVD schemes, irregularities of
concentration values in the region of channels are predicted using the CD scheme. These
are manifested by irregularities in flow streamlines passing through the channels.

7. Conclusions
Complex flow structures and sharp gradients in the solutal field associated with the
development of flow channels call for the implementation of special non-oscillarity type
high-order schemes to handle the regions of channels segregates. In the present study, a
time-splitting approach has been adopted to separately handle solute advection and
diffusion. This splitting technique allows the application of accurate total variation
dimensioning schemes (TVD and WENO) for solution of solute advection. Solidification
of a binary Pb-18%Sn alloy in a two-dimensional rectangular domain is considered for
the analysis of thermo-solutal convection, channels formation, and macrosegregation
fields obtained using different schemes. The governing equations for mass, momentum,
energy, and species are based on the volume-averaging method.

Grid convergence patterns and numerical uncertainty are found to be dependent on the
applied scheme. In general, the first-order hybrid scheme is highly diffusive and under
predicts the formation of channels. Numerical diffusion associated with first-order
schemes is non-negligible in the region of channels formation where the flow is oblique to
the grid boundaries. The second-order central-difference scheme brings about oscillations

Figure 11.
Horizontal profiles of

mixture composition at
the end of solidification
using different schemes
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with possible non-physical extremes of solute composition in the region of channel
segregates due to discontinuities in the solutal field. The results obtained using TVD and
WENO schemes contain no oscillations and show an excellent capture of channels
formation and resolution of the interface between solute-rich and depleted bands.
Numerical results show the difficulty of obtaining grid-independent solutions with respect
to local details in the regions of channels formations because of the highly unstable and
transient convection phenomena. However, satisfactory grid-independent prediction of
global extent of macrosegregation can be achieved.

A minimum number of nodes is required for resolving the flow characteristics and
following the stages of development of channels. Since channel size (about 1,000mm) is
related to the value of dendrite arm spacing (d2 ¼ 185mm in the present study), the
minimum required grid size should be in the order of dendrite arm spacing in order to
accurately predict channels formations. In areas away from the channels region the
grid size is not critical and a coarser mesh can be used. However, considerable
differences between the various simulations that are apparent on the local scale of a
single channel indicate that the minimum spacing recommendation is not sufficient to
achieve grid-independent results. The local scale phenomena in the channels region are
better described by the increasing the number of nodes in the channel.

Different stages of channels formation are followed by analyzing thermo-solutal
convection and macrosegregation at different times during solidification. The first
developed channel is observed to form horizontally along the cavity top surface.
Perturbations in the flow field in the region below the first channel, which are in the
general form of oblique flow at the region of a channel formation, result in the
development of other channels in a sequence that starts from the top towards the bottom
of the cavity. The flow is perturbed because of the tendency to approach and feed a
previously established upper preferred flow path. This perturbation induces remelting
with a new established flow channel as the flow in the earlier one is decreased by the
progress of solidification. Once a channel is developed it starts elongating to connect
with the top solute-rich region. The last developed channels may therefore not elongate
to the top region as due to insufficient time to be completely established. This order of
channels development is observed using either CD or TVD schemes.

References

Amberg, G. (1991), ‘‘Computation of macrosegregation in an iron–carbon cast’’, International
Journal of Heat and Mass Transfer, Vol. 34, pp. 217-27.

Beckermann, C. (2002), ‘‘Modelling of macrosegregation: applications and future needs’’,
International Materials Reviews, Vol. 47, pp. 243-61.

Beckermann, C. and Viskanta, R. (1993), ‘‘Mathematical modeling of transport phenomena
during alloy solidification’’, Applied Mechanics Reviews, Vol. 46, pp. 1-27.

Bennon, W.D. and Incropera, F.P. (1987), ‘‘A continuum model for momentum heat and species
transport in binary solid–liquid phase change systems – I. Model formulation’’,
International Journal of Heat and Mass Transfer, Vol. 30, pp. 2161-70.

Celik, I.B. and Li, J. (2005), ‘‘Assessment of numerical uncertainty for the calculations of turbulent
flow over a backward-facing step’’, International Journal for Numerical Methods in Fluids,
Vol. 49, pp. 1015-31.

Cless, C.M. and Prescott, P. (1996), ‘‘Effect of time marching schemes on predictions of oscillatory
natural convection in fluids of low Prandtl number’’, Numerical Heat Transfer Part A,
Vol. 29, pp. 575-97.



Simulation of
channel

segregates

863

Felicelli, S.D., Heinrich, J.C. and Poirier, D.R. (1991), ‘‘Simulation of freckles during vertical
solidification of binary alloys’’, Metallurgical Transactions B, Vol. 22, pp. 847-59.

Felicelli, S.D., Poirier, D.R. and Heinrich, J.C. (1997), ‘‘Macrosegregation patterns in multi-
component Ni-base alloys’’, Journal of Crystal Growth, Vol. 177, pp. 145-61.
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Appendix
A.1 Lax-Wendroff TVD SUPERBEE scheme
The 1D Lax-Wendroff discretization of Equation (13) by a characteristic method in a finite-
volume approximation is written as:

Cnþ1
i ¼ Cn

i � usðCn
i � Cn

i�1Þ þ
1

2
us�xðus� 1ÞðgnLW

i � gnLW
i�1 Þ ðA:1Þ

where s ¼ �t=�x is the CFL number, gn;LW
i ¼ ðCn

iþ1 � Cn
i Þ=�x corresponds to the Lax-Wendroff

slope. To render the Lax-Wendroff TVD, the idea is to limit the slope g
n;LW
i to enforce the TVD

requirements. The new limited slope is expressed as (Hirsch, 1990; Sweby, 1984, 1985):

g
n;T
i ¼ maxð0;minð1; 2un

i Þ;minð2; fun
i ÞÞ

Cn
iþ1 � Cn

i

Dx
¼ fðun

i Þg
n;LW
i ðA:2Þ

where un
i ¼ ðCn

i � Cn
i�1Þ=ðCn

iþ1 � Cn
i Þ. In fact, fðun

i Þ is a correcting flux equal to 1 in the
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whole solving domain, except near the extrema where this flux limits the Lax-Wendroff
slope. This TVD scheme is called the Lax-Wendroff TVD SUPERBEE scheme. The final
expression of Cnþ1 in 1D for any u is:

Cnþ1
i ¼ Cn

i � smaxð0; uÞðCn
i � Cn

i�1Þ þ
1

2
s�x maxð0; uÞðus� 1Þ

� ðfn
i g

nLW
i � �n

i�1g
nLW
i�1 Þ � sminð0; uÞðCn

iþ1 � Cn
i Þ

þ 1

2
s�x minð0; uÞðusþ 1Þðfn

iþ1g
nLW
iþ1 � fn

i g
nLW
i Þ

ðA:3Þ

The 2D and 3D form of Equation (A.3) is immediately deduced from a transposition of the x-
direction flux to y- and z- directions. Solving the three directions at the same time may induce some
distortions in the diagonal directions. As a consequence for 2D and 3D calculations, the time step is
cut into two and three parts, respectively, and solution is obtained for one direction in each part.
Considering Vx, Vy, and Vz as the velocities in each direction, the solution is obtained in three steps

as: C
nþ1=3
i; j; k ¼ f ðCn

i; j; k;VxÞ, C
nþ2=3
i; j; k ¼ f ðCnþ1=3

i; j; k ;VyÞ, and Cnþ1
i; j; k ¼ f ðCnþ2=3

i; j; k ;VzÞ where the function f

is given by the expression of Equation (A.1) using the corresponding velocity and concentration.

A.2 Fifth-order WENO scheme
To provide a description of the fifth-order finite difference WENO scheme ( Jiang and Shu, 1996)
in the simplest case, the 2D species conservation equation can be written as:

Ct þ f ðCÞx þ gðCÞy ¼ 0 ðA:4Þ

Before discussing the spatial discretizations of the derivatives f(C)x and g(C)y, it should be
mentioned that the time discretization of WENO scheme is implemented by a class of third order
Runge-Kutta method for solving:

Ct ¼ LðC; tÞ ðA:5Þ

Where L(C, t) is a discretization of the spatial operator. The third-order Runge-Kutta is simply
described as:

Cð1Þ ¼ Cn þ�t LðCnÞ

Cð2Þ ¼ 3

4
Cn þ 1

4
Cð1Þ þ 1

4
�t LðCð1ÞÞ

Cnþ1 ¼ 1

3
Cn þ 2

3
Cð2Þ þ 2

3
�t LðCð2ÞÞ

ðA:6Þ

A conservative finite difference spatial discretization to the conservation law given by Equation
(A.4) approximates the derivative f (C)x by a conservative difference:

f ðCÞx
��
x¼xj
¼ 1

�x
f̂f jþ1=2 � f̂f j�1=2

	 

ðA:7Þ

where f̂f jþ1=2 is the numerical flux, which typically is a Lipschitz continuous function of several
neighboring values Cj. g(C)y is approximated in the same way. For the simplest case of a scalar
Equation (A.4) and if f 0ðCÞ�0, the fifth-order finite difference WENO scheme has the flux given
by (Shu, 2003):

f̂f jþ1=2 ¼ w1 f̂f
ð1Þ
jþ1=2 þ w2 f̂f

ð2Þ
jþ1=2 þ w3 f̂f

ð3Þ
jþ1=2 ðA:8Þ



HFF
20,8

866

where f̂f
ðiÞ
jþ1=2 are three third-order fluxes on three different stencils given by:

f̂f
ð1Þ
jþ1=2 ¼

1

3
f ðCj�2Þ �

7

6
f ðCj�1Þ þ

11

6
f ðCjÞ

f̂f
ð2Þ
jþ1=2 ¼ �

1

6
f ðCj�1Þ þ

5

6
f ðCjÞ þ

1

3
f ðCjþ1Þ

f̂f
ð3Þ
jþ1=2 ¼

1

3
f ðCjÞ þ

5

6
f ðCjþ1Þ �

1

6
f ðCjþ2Þ

ðA:9Þ

and the non-linear weights wi are given by:

wi ¼
~wwi

P3
k¼1

~wwk

; ~wwk ¼
�k

ð"þ �kÞ2
ðA:10Þ

with the linear weights �k given by:

�1 ¼
1

10
; �2 ¼

3

5
; �3 ¼

3

10
ðA:11Þ

Finally, " is a parameter to avoid the denominator to become zero and is usually taken as 10�6.
The smoothness indicators �k are given by:

�1 ¼
13

12
f ðCj�2Þ � 2f ðCj�1Þ þ f ðCjÞ
� �2þ 1

4
f ðCj�2Þ � 4f ðCj�1Þ þ 3f ðCjÞ
� �2

�2 ¼
13

12
f ðCj�1Þ � 2f ðCjÞ þ f ðCjþ1Þ
� �2þ 1

4
f ðCj�1Þ � f ðCjþ1Þ
� �2

�3 ¼
13

12
f ðCjÞ � 2f ðCjþ1Þ þ f ðCjþ2Þ
� �2þ 1

4
3f ðCjÞ � 4f ðCjþ1Þ þ f ðCjþ2Þ
� �2

ðA:12Þ

The scheme is proven to be uniformly fifth-order accurate including at smoothness extrema, and
this is verified numerically. Detailed discussion of WENO scheme and generalization for complex
situations are reported by Shu (2003) and Jiang and Shu (1996).
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